Avances en la investigación en ciencias aplicadas Acceso abierto

Abstracto

The role of magnetic field intensity in blood flow through overlapping stenosed artery: A Herschel-Bulkley fluid model

Lokendra Parmar, S. B. Kulshreshtha and D. P. Singh

A mathematical model for the blood flow through an overlapping stenosed artery with core region under the effect of magnetic field is presented. The laminar, incompressible, fully developed, non-Newtonian (Herschel-Bulkley) flow of blood in an artery having overlapping stenosis is numerically studied under the action of transverse magnetic field. Effect of overlapping stenosis and externally applied magnetic field in the blood flow is discussed of analytically and graphically. All the flow characteristics are established to be affected by the existence of overlapping stenosis and revelation of magnetic field of different intensities. Analytical expressions for velocity, core velocity, volumetric flow rate and shear stress are derived by using the model. The study provides an insight into the effects of magnetic field intensities and yield stress on the velocity, core velocity, and volumetric flow rate of the blood and also on shear stress

Descargo de responsabilidad: este resumen se tradujo utilizando herramientas de inteligencia artificial y aún no ha sido revisado ni verificado